
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Portals 3.3 on the
Sandia/Cray Red Storm System

Ron Brightwell Trammell Hudson Kevin Pedretti
Rolf Riesen Keith Underwood

Sandia National Laboratories
Scalable Computing Systems Department

Cray User Group Annual Technical Conference
May 18, 2005

Outline

• Portals history
• Portals objects
• Portals implementation
• Portals for Red Storm
• Performance on Red Storm
• Conclusions

Portals Timeline

• Portals 0.0 - 1991
– SUNMOS (Sandia/UNM OS)
– nCUBE, Intel Paragon
– Direct access to network FIFOs
– Message co-processor

• Portals 1.0 - 1993
– Data structures in user-space
– Kernel-managed and user-managed memory descriptors
– Published but never implemented

• Portals 2.0 - 1994
– Puma/Cougar
– Message selection (match lists)
– Four types of memory descriptors (three implemented)

• Portals 3.0 - 1998
– Cplant/Linux
– Functional API
– Target intelligent/programmable network interfaces

Portals 3.3 Features

• Best effort, in-order delivery
• Well-defined transport failure semantics
• Based on expected messages
• One-sided operations

– Put, Get, Atomic swap
• Zero-copy
• OS-bypass
• Application offload

– No polling or threads to move data
– No host CPU overhead

• Runtime system independent

Portal Put

Initiator Target

Portal

Translation

Data
Transmission

Optional
Acknowledgement

Portal Get

Initiator Target

Portal

Translation

Request

Data
Transmission

Portals Addressing
Operational BoundaryPortal Table

Memory
Descriptors

Event Queue Memory
Regions

Match List

Application
SpacePortal Space

Access Control Table

Match Entry Contents

– Source node id
– Source process id
– 64 match bits
– 64 ignore bits

Memory Descriptor

• Start address
– Optionally supports gather/scatter list

• Length in bytes
• Threshold

– Number of operations allowed
• Max size

– Low-water mark
• Options

– Put/get
– Receiver/sender managed offset
– Truncate
– Ack/no ack
– Ignore start/end events

• 64 bits of user data
• Event queue handle
• Auto-unlink option

Event Queue

• Circular queue that records operations on MDs
• Types of events

– Get (PTL_EVENT_GET_{START,END})
• MD has received a get request

– Put (PTL_EVENT_PUT_{START,END})
• MD has received a put request

– Reply (PTL_EVENT_REPLY_{START,END})
• MD has received a reply to a get request

– Send (PTL_EVENT_SEND_{START,END})
• Put request has been processed

– Ack (PTL_EVENT_ACK)
• MD has received an ack to a put request

Event Scenarios

initiator target

reply end

reply start

ack

get start

get end

put start

put end

get

put

send end

send start

Event Entry Contents

• Event type
• Initiator of event (nid,pid)
• Portal index
• Match bits
• Requested length
• Manipulated length
• Offset
• MD
• 64 bits of out-of-band data
• Link
• Sequence number

What Makes Portals Different?

• Provides elementary building blocks for
supporting higher-level protocols well

• Allows structures to be placed in user-space,
kernel-space, or NIC-space

• Receiver-managed offset allows for efficient and
scalable buffering of “unexpected” messages

• Supports multiple protocols within a process

Portals Reference Implementation Design

API

Library

Transport

API Space

Library Space

NAL

Myrinet Kernel Implementation

API

Library

RTS/CTS MCP

User Space

Kernel Space

NAL

Myrinet MCP Implementation

API

Library

Wire

User Space

NIC Space

NAL

Cray Portals Bridge

• Needed single version of NIC firmware that
supports all combinations of
– User-level and kernel-level API
– NIC-space and kernel-space library

• Cray added bridge layer to reference
implementation to allow NAL to interface multiple
API NALs and multiple library NALs
– qkbridge for Catamount applications
– ukbridge for Linux user-level applications
– kbridge for Linux kernel-level applications

SeaStar NAL

• Kevin already told you this ☺
• Portals library currently in kernel-space

– Interrupt-driven
– “generic”

• Portals library moving to NIC-space
– No interrupts
– “accelerated”

Standard Red Storm/XT3 Performance Disclaimer

• Performance results are from a snapshot of a
developer code base

• Sandia C firmware stack
• Some features that may impact performance are

not implemented
– End-to-end reliability protocol

Micro-Benchmarks

• PtlPerf
– Ping-pong latency and bandwidth (uni- and bi-

directional)
– Single, persistent ME, MD, EQ
– Best-case performance for Portals

• NetPIPE 3.6.2
– Ping-pong latency and bandwidth (uni- and bi-

directional)
– Streaming bandwidth
– Implemented Portals module

PtlPerf Latency

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

get
put-bi

put

PtlPerf Bandwidth (10KB-100KB)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 20000 40000 60000 80000 100000

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

put
put-bi

get

PtlPerf Bandwidth (100KB-2MB)

 0

 200

 400

 600

 800

 1000

 1200

 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

put
put-bi

get

NetPIPE Latency

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

get-bi
get-stream

get
put-bi

put
put-stream

NetPIPE Bandwidth

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

get-bi
get-stream

get
put-bi

put
put-stream

Conclusions

• Portals 3.3 is the lowest-level network
programming interface on Red Storm

• Cray bridge abstraction allows single instance of
firmware to support multiple API and Library
paths

• Interrupt-driven kernel-space Library
implementation achieves ~4.8 µs

• Expect NIC-space Library implementation to do
better

Questions?

MPI Latency

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

shmem-preposted
shmem

mpich2-preposted
mpich-1.2.6-preposted no vshort ls 5

mpich-1.2.6-preposted
mpich2

mpich-1.2.6 no vshort
mpich-1.2.6

	Portals 3.3 on theSandia/Cray Red Storm System
	Outline
	Portals Timeline
	Portals 3.3 Features
	Portal Put
	Portal Get
	Portals Addressing
	Match Entry Contents
	Memory Descriptor
	Event Queue
	Event Scenarios
	Event Entry Contents
	What Makes Portals Different?
	Portals Reference Implementation Design
	Myrinet Kernel Implementation
	Myrinet MCP Implementation
	Cray Portals Bridge
	SeaStar NAL
	Standard Red Storm/XT3 Performance Disclaimer
	Micro-Benchmarks
	PtlPerf Latency
	PtlPerf Bandwidth (10KB-100KB)
	PtlPerf Bandwidth (100KB-2MB)
	NetPIPE Latency
	NetPIPE Bandwidth
	Conclusions
	Questions?
	MPI Latency

